
Cosmological Parameters

1. The Hubble Constant (normalized expansion rate today): 

𝐻! = ⁄𝑅̇ 𝑅 /</!
≈ 68 − 72 km/s/Mpc

More generally, the Hubble Parameter (changes with time)

𝐻 ≡ ⁄𝑅̇ 𝑅

2. The Matter Density parameter (normalized mass density):

Ω4 =
𝜌

𝜌123/
, Ω4,! ≈ 0.3

3. The Dark Energy Density parameter (normalized dark energy 
density):

Ω7 =
Λ

Λ123/
, Ω7,! ≈ 0.7
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In this Universe, R(t) is a straight line, and 
Homer worked out an age of 13.9 billion 
years for 𝐻! = 72 km/s/Mpc.

The Hubble Parameter is given by

𝐻 ≡
𝑅̇
𝑅

so it’s the slope of the R(t) line divided by the 
scale factor itself (R). 

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).
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In this Universe, R(t) is a straight line, and 
Homer worked out an age of 13.9 billion 
years for 𝐻! = 72 km/s/Mpc..

The Hubble Constant is the Hubble 
Parameter today (at 𝑡 = 𝑡!). 

So it is the slope of the line today, divided by 
𝑅! = 1.

𝐻! ≡
𝑅̇(𝑡!)
𝑅!

= 𝑅̇(𝑡!)

So the Hubble Constant is essentially just the 
slope of the line today.

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).
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Changing the Hubble Constant means 
changing the slope at 𝑡 = 𝑡!. 

Remember the boundary conditions! No 
matter how you change the parameters of 
the Universe, R(t) has to satisfy the following 
conditions:

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

?!
= 𝑅̇ 𝑡! = 𝐻!

This changes 𝑡!, the age of the Universe! This 
is why, for a contant expansion universe,

𝑡! = ⁄1 𝐻!

A higher Hubble constant results in a younger 
Universe, and vice-versa.

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).



The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”

But we still have to obey the boundary 
conditions!

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

? /!
= 𝑅̇ 𝑡! = 𝐻!



The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”

at 
𝒕 𝟎,

slo
pe =

𝑯 𝟎

But we still have to obey the boundary 
conditions!
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? /!
= 𝑅̇ 𝑡! = 𝐻!

The more mass you put in (bigger Ω4) the 
more the curve bends (deceleration due to 
gravity is getting strong), and the younger the 
Universe gets.

For Ω4 = 1, Ω7 = 0, 𝑅̇ t ⟶ 0 as t ⟶ ∞
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For Ω4 > 1, Ω7 = 0, the Universe eventually 
recollapses.
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What if we want the same age?

If I wanted to add mass but keep the age the 
same, I have to change the Hubble Constant 
𝐻!. So I’m changing the slope at 𝑡 = 𝑡!.

Three universes with different amounts of 
matter but having the same age due to 
different Hubble Constants. ⇒

But we have observational constraints on the 
Hubble Constant, so we are not free to do just 
anything we want with it!

The R(t) plot: Understanding the parameters graphically and intuitively
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Again, since we have to obey the boundary 
conditions (𝑅!, 𝐻!), an accelerating universe 
must be older than a constant expansion 
universe.

In fact, if we add too much lambda, we run 
into the problem of a universe that never has 
a beginning!

🤯

The R(t) plot: Understanding the parameters graphically and intuitively

Now remove matter and add a cosmological constant to the Universe (so Ω4 = 0, Ω7 > 0). This accelerates the 
expansion of  Universe. It must have been expanding slower in the past, so R(t) must be “bending upwards.”



The R(t) plot: Understanding the parameters graphically and intuitively

What if we have both matter and a cosmological constant? So Ω4 > 0 𝒂𝒏𝒅 Ω7 > 0. Now we have a 
competition between matter decelerating the Universe and lambda accelerating the Universe. Who wins?
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Go back to the Friedmann Equation:

Back in time, the universe was smaller, the 
density was higher, and gravity wins: the 
Universe starts out decelerating.

Over time, the density drops, gravity starts to 
lose, and lambda starts to dominate: late 
acceleration.

But remember, we still have to obey the 
boundary conditions (𝑅!, 𝐻!)



Universes on the (𝛀𝐦, 𝛀𝚲) plane

These different behaviors can be mapped onto an (Ω4, Ω7) 
plane to describe the resulting universes.

Remember the governing equations of cosmology. The 
Dynamics Equation:
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The Dynamics Equation shows that Λ (acceleration) works in 
the opposite sense of 𝜌 (deceleration) in determining the 
expansion history.

The Dynamics Equation solves to the Friedmann Equation:
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The Friedmann Equation shows that Λ and 𝜌 work together in 
determining the curvature.



Ages and Lookback times

In all universes, redshift tells you the relative size of the Universe at that redshift: R = ⁄1 1 + 𝑧 . 
But the connection between redshift and time is different in different cosmologies. 

• Age: How old the universe was at a given redshift: 𝑡(𝑧)
• Lookback time: How far back in the past are we looking at a given redshift: 𝑡! − 𝑡(𝑧)

For 𝐻! = 72 km/s/Mpc ⇒



Ages and Lookback times

In all universes, redshift tells you the relative size of the Universe at that redshift: R = ⁄1 1 + 𝑧 . 
But the connection between redshift and time is different in different cosmologies. 

• Age: How old the universe was at a given redshift: 𝑡(𝑧)
• Lookback time: How far back in the past are we looking at a given redshift: 𝑡! − 𝑡(𝑧)

Here it is in relative 
terms, i.e., fraction of the 
Universe’s current age.

In general:
𝑧 = 1: ≈ halfway back
𝑧 = 3: ≈ 85% back

(JWST seeing things at
𝑧 > 10: ≈ 95% back!!!)



The Big Bang

The Friedmann Eqn shows that the universe must be expanding from a very dense and 
hot initial state. 

(Fred Hoyle was skeptical of this notion and in 1949 referred to it derisively in a BBC radio 
interview as “The Big Bang”. The name stuck.)

Remember, though, the Big Bang is not an explosion of material into space, its an 
expansion of space, carrying material with it.

A dense hot object emits blackbody radiation, which peaks at a temperature given by 
Wien’s law:

𝜆"@AB =
0.29 𝑐𝑚
𝑇 (𝐾)

As the Universe expands, this blackbody spectrum is redshifted, but keeps the blackbody shape with a temperature that 
scales inversely with size: 𝑇 ∼ ⁄1 𝑅.

We say the Universe cools as it expands, and we should see this redshifted light from the Big Bang coming from all directions.

Fred Hoyle



The Big Bang, nucleosynthesis, and the microwave background

1948: George Gamow and his student Ralph Alpher show that in the early 
universe the temperature and density would be right to fuse hydrogen 
into helium, at about the right He:H abundance ratio. They called this “Big 
Bang Nucleosynthesis” and added Hans Bethe to the study, writing the 
famous “𝛼𝛽𝛾 paper”. 

Necessary conditions: 𝑇CCD ≈ 10E𝐾, 𝜌CCD ≈ 10') gm/cm3.

Since density scales inversely with volume (𝜌 ∼ 𝑅',), given the current density of the Universe (𝜌!), they worked out 
that this would happen when the Universe was at a scale factor of 

𝑅CCD ≈ ⁄𝜌! 𝜌CCD ⁄G , ≈ 3×10'E

And if 𝑇~ ⁄1 𝑅, the Universe today should have a temperature of about 

𝑇! ≈ 𝑇CCD ⁄𝑅CCD 𝑅! ≈ 3 K

A 3K blackbody peaks at microwave wavelengths, so today’s universe should be bathed in the microwave background.

https://journals.aps.org/pr/abstract/10.1103/PhysRev.73.803


The Big Bang, nucleosynthesis, and the microwave background

So in 1948, the microwave background was predicted but not yet observed.

Early 1960s: Princeton scientists were developing a new microwave/radio observatory to search for these cosmic 
microwaves, when suddenly....

...they get a call from AT&T Bell Laboratories.

1964: Arno Penzias and Robert Wilson

Bell Lab engineers working on a radio antenna to communicate with 
the new Telstar satellites.

Report a persistant all-sky “hiss” in their equipment: the discovery of 
the cosmic micowave background (CMB).

Penzias & Wilson



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K.

COsmic Background Explorer (COBE)
1989-1993



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K. 
The CMB is (almost) perfectly smooth.

all-sky optical map



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K. 
The CMB is perfectly smooth (± 0.01 K).

all-sky microwave map

2.716 K                                2.726 K                                  2.736 K

Cosmologists need



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K. 
The CMB is perfectly smooth (± 0.01 K).
Well, almost perfectly smooth  (± 0.0003 K) COBE all-sky microwave map (1992)



The cosmic microwave background (CMB)

What are we actually seeing?

This is light from the very early Universe, redshifted into microwave 
frequencies.

In the hot, dense early Universe, everything was ionized, lots of free 
protons and electrons. Photons couldn’t travel very far before being 
scattered by the electrons, so the Universe was opaque.

But the Universe is expanding and cooling, and at some point the temperature drops low enough that electrons and protons 
can bind together to form bound atoms (“re-combination”). At this point there are no more free electrons, and photons can 
travel freely: the Universe becomes transparent.

This happens when the temperature drops to ≈ 3000 K, which corresponds to a redshift of z ≈ 1000, or an age of ≈ 350,000 
years after the Big Bang. We cannot “look back” to earlier times, because the Universe was opaque earlier than this.

The small temperature fluctuations correspond to regions of higher or lower mass density: the “lumps and bumps” of mass 
that will grow up to be galaxies and galaxy clusters: the large scale structure we see today.




