
ASTR 222 Homework #5 
 

 
 
1. Deriving the Expansion History of the Universe (20 points) 
 
Start with the Friedman equation: 
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First, derive R(t) for a flat, matter-only Universe by integrating the Friedman equation. Then use your 

expression for R(t) to show that the age of such a Universe is 𝑡0 =
2

3

1

𝐻0
. In doing this, you will find it helpful to 

remember that the density of matter scales with volume, so that you can rewrite 𝜌 as 𝜌0𝑅−3. 
 
Next, in the very early universe (before 𝑡 ≈ 10,000 years), the energy density of the photons in the  Universe 
was much higher than the matter density. At these times, we say the universe was “radiation dominated.” 
While the energy density of matter scales as 𝑅−3 (i.e., its just a volume effect), the energy density of photons 
scales as 𝑅−4, since not only is the volume of the universe going up as it expands, photons are being redshifted 
and thus have lower energy. This results in an that extra factor of 𝑅 in the scaling factor for photon energy 
density. 
 
Use the expression for energy density scaling in place of matter density scaling in the Friedman equation to 
work out how R(t) scales with time during the radiation dominated era. Compare that expression to what you 
got in the previous calculation for the flat matter-dominated universe. 
 
Now finally consider a flat Universe with a cosmological constant that drives the expansion. At late times, 
when the Universe has expanded to very large size, use the Friedman equation to work out how R(t) scales 
with time in this “Lambda dominated era.” 
 
In each of these calculations, make sure to start with the full Friedman equation. Then explain any physical 
assumptions or justifications for dropping terms from the equation before deriving your solution. Also give 
good explanations for each step of your derivation; remember, I don’t want pages and pages of unexplained 
math! 
 
 
 

2. Cosmological Densities (20 points) 
 
Given our expression for the critical density (the density of matter needed to make the Universe spatially flat 
by matter alone): 
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Work out the critical density today (at 𝑡 = 𝑡0), in units of 𝑀⨀ 𝑀𝑝𝑐3⁄ .  



 
Now work out the density (again in 𝑀⨀ 𝑀𝑝𝑐3⁄ ) of various objects in the Universe: 
 

• A globular cluster 

• The Milky Way galaxy 

• The Local Group of galaxies 

• The Coma Cluster of galaxies 
 
For any information you need to get (masses, sizes, distances, etc), make sure to cite your sources. 
 
In each case, after calculating the density, calculate an “Omega-object”, i.e.: 
 

Ω𝑜𝑏𝑗 =
ρ𝑜𝑏𝑗

ρ𝑐𝑟𝑖𝑡
 

 
Take some care with units while doing these calculations, and remember that if you measure distances in pc, 
velocities in km/s, masses in solar masses, and time in Myr, then the gravitational constant can be expressed 

as 𝐺 = 4.43 × 10−3 pc (km s⁄ )2 𝑀⨀
−1. Remember also that 1 km s⁄  ≈1 pc Myr⁄ . 

 
Also, in each case, explain whether you feel your density estimate of the object is reasonable, or if you think it 
may be an underestimate or an overestimate. Explain your reasoning. 
 
Finally, do you think any of them are a reasonable estimate of the overall density of the Universe? Again, 
explain your reasoning, and explain physically, not just based on a comparison of Ω𝑜𝑏𝑗 to some expected value 

of Ω𝑚. 
 
 
 

3. Observational Cosmology (20 points) 
 
(Note: Detailed calculations of apparent magnitudes, sizes, “distances”, times, etc as a function of redshift 
under different cosmologies can be very complicated mathematically, so rather than working things out 
analytically, we are going to use astropy’s cosmology package to do things for us. Instructions for using this 
package are given at the end of the assignment.) 
 
In the local universe, the massive elliptical galaxy M49 lies at a distance of 16.5 Mpc, has a total luminosity of 
𝐿𝑉,𝑡𝑜𝑡 = 1.6 × 1011 𝐿⨀ and a physical half-light radius of 𝑟𝑒 = 25 kpc. Using our standard (i.e., non-
cosmological) methods for calculating apparent magnitudes, angular sizes, etc, calculate M49’s total apparent 
V magnitude, angular half-light radius (in arcsec), and effective surface brightness (in magnitudes per square 
arcsecond). Remember that the effective surface brightness measures the average surface brightness inside 
the half-light radius, and we can measure that from 〈𝜇〉𝑒 = 𝑚1 2⁄ + 2.5 log 𝐴, where 𝑚1 2⁄  is the apparent 
magnitude of half the total light, and A is the area (in square arcseconds) inside the half-light radius. 
 
Now imagine observing M49 if it were redshifted by different amounts, and we’ll ask how the observed 
properties of the galaxy change as we move it to higher and higher redshift. We’ll compare the properties 
calculated using a simple Hubble law (which will be incorrect at higher redshift) vs those calculated in a 
cosmologically correct way. The idea here will be to find out how fast we get bad answers by doing things the 
simple (and cosmologically incorrect) way. 



 
For the first three rows, given the redshift calculate the distance, apparent magnitude, and angular half-light 
radius of M49 at each redshift simply using a simple Hubble’s law (𝑣 = 𝐻0𝑑) and the regular expressions for 
apparent magnitude and angular size. Use 𝐻0 = 72 km/s/Mpc for this. Remember, we know doing the 
calculation this way is wrong at higher redshift, but what we are going to look at is how quickly does it get 
wrong. 
 
Now let’s do the calculation the right way. Adopt our “best” cosmological model (𝐻0 = 72,  Ω𝑚 = 0.3,  ΩΛ =
0.7) and use astropy’s cosmology package to work out the rest of the entries in the table below, which will 
give the “cosmologically correct” observed properties of M49 at different redshifts. 
 

Property 𝑧 = 0.00396 𝑧 = 0.01 𝑧 = 0.1 𝑧 = 0.5 𝑧 = 1 𝑧 = 5 

Values Using a simple Hubble Law distance 
Hubble Law 
Distance (Mpc) 

      

Hubble Distance 
Apparent V mag 

      

Hubble Distance 
Half-light radius 
(arcsec) 

      

Cosmologically correct calculations 

Luminosity 
Distance (Mpc) 

      

Apparent V mag       

Angular Diameter 
Distance (Mpc) 

      

Half-light radius 
(arcsec) 

      

Effective surface 
brightness (mags 
per sq. arcsec) 

      

Age of Universe at 
observed redshift 
(Gyr) 

      

Look back time to 
observed redshift 
(Gyr) 

      

 
Note that since 𝑧 = 0.00396 is the redshift that corresponds to a distance of 16.5 Mpc, the “cosmologically 
correct” numbers at this redshift should pretty much match what you calculated by hand, so that would be a 
good check to make sure you’re doing everything correctly. 
 
After completing the table, answer the following questions: 
 

• If you are used to using plain old Hubble Law distances, how far out in redshift can you go before your 
“Hubble law magnitudes” are wrong by 0.1 mag or more? How far out can you go before your angular 
half-light radius will be wrong by 10% or more?  



 

• Now look at the cosmologically correct half light radius as you go to higher redshift. Assume that you 
can accurately measure half-light radii as long as they are bigger than 0.5 arcsec. How far out in 
redshift can you go before the galaxy becomes too small to accurately measure its half-light radius? 

 

• In class, when talking about galaxies, we said that one of the reasons that surface brightness is so 
important is that it is “distant invariant” – that is, if you imagine moving a galaxy to larger distances, its 
observed surface brightness doesn’t change. Look at the cosmologically-correct surface brightness 
calculation: is it also “redshift invariant”? Or does M49 show a brighter or fainter surface brightness as 
you move it to higher redshift? Look at how apparent magnitude and angular size change with redshift 
and explain why the observed surface brightness changes the way it does. 

 

• The apparent V magnitude (and surface brightness) you calculate this way don’t account for another 
important effect: the fact that when we look at objects at different redshift using single filter (say, the 
V-band filter), the light we are seeing actually was emitted by the galaxy at much bluer wavelengths, 
before being redshifted to the wavelengths we observe. If the V filter has a central wavelength of 𝜆𝑐 =

5500 Å, what wavelength does that correspond to in the emitted spectrum of M49 at each of those 
redshifts in the table above? If you were to actually correct for this effect (a complex process called a 
“K-correction”), would that make the observed magnitudes and surface brightnesses brighter, fainter, 
or would they not change at all? To answer this, think about what the emitted spectrum from a galaxy 
like M49 ought to look like, and make sure to explain your reasoning. 
 

• Finally, if we want to be looking back to times when the universe was younger than 2 Gyr, how far out 
in redshift would we have to look? What about if we only wanted to look back to times earlier half the 
Universe’s current age? 

 
  



Using Astropy’s Cosmology package 
 
 
from astropy import cosmology 
from astropy import units as u 
 
# set up the universe with the parameters you want: 
universe=cosmology.LambdaCDM(H0=72, Om0=0.3, Ode0=0.7) 
 
# set redshift you want to explore 
z=0.3  
 
# luminosity distance (DL) is what you use when calculating apparent magnitudes, 
# i.e., m-M = 5*np.log10(DL)+5 (and remember DL should have units of parsecs!) 
DL=universe.luminosity_distance(z) 
print('Luminosity distance at z={} is {:.2f}'.format(z,DL)) 
# but before you stuff it into the mag-distance equation, make sure DL is in parsecs,  
# and that you’ve converted it to a regular python number: 
DL_pc = DL.to(u.pc).value 
# and now you can calculate things using DL_pc 
 
# angular diameter distance (DA) is what you use when converting between  
#angular size (alpha) and physical size (d_phys): 
# d_phys = alpha[arcsec]*DA/206265 
DA=universe.angular_diameter_distance(z) 
print('Angular diameter distance at z={} is {:.2f}'.format(z,DA)) 
# again, you can convert it to a regular number and unit, for example kpc 
DA_kpc = DA.to(u.kpc).value 
# and now you can calculate things using DA_kpc 
 
# ages and lookback times you can get this way: 
print('Universe age at z={} is {:.2f}'.format(z,universe.age(z))) 
print('Lookback time to z={} is {:.2f}'.format(z,universe.lookback_time(z))) 


